Clarke Subgradients of Stratifiable Functions

نویسندگان

  • Jérôme Bolte
  • Aris Daniilidis
  • Adrian S. Lewis
  • Masahiro Shiota
چکیده

We establish the following result: if the graph of a lower semicontinuous real-extendedvalued function f : Rn → R ∪ {+∞} admits a Whitney stratification (so in particular if f is a semialgebraic function), then the norm of the gradient of f at x ∈ dom f relative to the stratum containing x bounds from below all norms of Clarke subgradients of f at x. As a consequence, we obtain a Morse-Sard type theorem as well as a nonsmooth extension of the KurdykaLojasiewicz inequality for functions definable in an arbitrary o-minimal structure. It is worthwhile pointing out that, even in a smooth setting, this last result generalizes the one given in [19] by removing the boundedness assumption on the domain of the function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clarke Subgradients for Directionally Lipschitzian Stratifiable Functions

Using a geometric argument, we show that under a reasonable continuity condition, the Clarke subdifferential of a semi-algebraic (or more generally stratifiable) directionally Lipschitzian function admits a simple form: the normal cone to the domain and limits of gradients generate the entire Clarke subdifferential. The characterization formula we obtain unifies various apparently disparate res...

متن کامل

An Effective Optimization Algorithm for Locally Nonconvex Lipschitz Functions Based on Mollifier Subgradients

We present an effective algorithm for minimization of locally nonconvex Lipschitz functions based on mollifier functions approximating the Clarke generalized gradient. To this aim, first we approximate the Clarke generalized gradient by mollifier subgradients. To construct this approximation, we use a set of averaged functions gradients. Then, we show that the convex hull of this set serves as ...

متن کامل

Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems

In this paper, we generalize the extended supporting hyperplane algorithm for a convex continuously differentiable mixed-integer nonlinear programming problem to solve a wider class of nonsmooth problems. The generalization is made by using the subgradients of the Clarke subdifferential instead of gradients. Consequently, all the functions in the problems are assumed to be locally Lipschitz con...

متن کامل

Approximating Functions on Stratifiable Sets

We investigate smooth approximations of functions, with prescribed gradient behavior on a distinguished stratifiable subset of the domain. As an application, we outline how our results yield important consequences for a recently introduced class of stochastic processes, called the matrix-valued Bessel processes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2007